The secreted Wnt antagonist Dickkopf-1 is required for amyloid β-mediated synaptic loss.
نویسندگان
چکیده
Extensive evidence supports a central role for amyloid-β (Aβ) in the pathogenesis of Alzheimer's disease (AD). Synaptic loss mediated by Aβ in early stages of the disease might contribute to cognitive impairments. However, little is known about the mechanism by which Aβ induces the loss of synapses. The expression of the Wnt antagonist Dickkopf-1 (Dkk1) is increased in brains of AD patients and in AD transgenic mouse models, suggesting that dysfunction of Wnt signaling could contribute to AD pathology. Here we report that acute exposure to Aβ oligomers induces Dkk1 expression together with the loss of synaptic sites. Importantly, Dkk1-neutralizing antibodies suppress Aβ-induced synapse loss in mouse brain slices. In mature rat hippocampal neurons, Dkk1 decreases the number of synapses without affecting cell viability. Ultrastructural analyses revealed that Wnt blockade decreases the size of presynaptic and postsynaptic terminals. Time-lapse recordings of RFP-labeled stable synaptic sites demonstrate that Dkk1 induces the dispersal of synaptic components. These findings identify Dkk1 as a potential therapeutic target for the treatment of AD.
منابع مشابه
miRNA-431 Prevents Amyloid-β-Induced Synapse Loss in Neuronal Cell Culture Model of Alzheimer's Disease by Silencing Kremen1
Synapse loss is well regarded as the underlying cause for the progressive decline of memory function over the course of Alzheimer’s disease (AD) development. Recent observations suggest that the accumulation of the Wnt antagonist Dickkopf-1 (Dkk1) in the AD brain plays a critical role in triggering synaptic degeneration. Mechanistically, Dkk1 cooperates with Kremen1 (Krm1), its transmembrane re...
متن کاملReversal of Synapse Degeneration by Restoring Wnt Signaling in the Adult Hippocampus
Synapse degeneration occurs early in neurodegenerative diseases and correlates strongly with cognitive decline in Alzheimer's disease (AD). The molecular mechanisms that trigger synapse vulnerability and those that promote synapse regeneration after substantial synaptic failure remain poorly understood. Increasing evidence suggests a link between a deficiency in Wnt signaling and AD. The secret...
متن کاملWnts in action: from synapse formation to synaptic maintenance
A proper balance between synapse assembly and disassembly is crucial for the formation of functional neuronal circuits and synaptic plasticity in the adult brain. During development, synaptogenesis generates a vast excess of synapses, which are subsequently eliminated. Importantly, aberrant synaptic disassembly during development underpins many neurological disorders. Wnt secreted proteins are ...
متن کاملDysfunction of Wnt signaling and synaptic disassembly in neurodegenerative diseases
The molecular mechanisms that regulate synapse formation have been well documented. However, little is known about the factors that modulate synaptic stability. Synapse loss is an early and invariant feature of neurodegenerative diseases including Alzheimer's (AD) and Parkinson's disease. Notably, in AD the extent of synapse loss correlates with the severity of the disease. Hence, understanding...
متن کاملActivation of canonical Wnt signalling is required for TGF-β-mediated fibrosis
The transforming growth factor-β (TGF-β) signalling pathway is a key mediator of fibroblast activation that drives the aberrant synthesis of extracellular matrix in fibrotic diseases. Here we demonstrate a novel link between transforming growth factor-β and the canonical Wnt pathway. TGF-β stimulates canonical Wnt signalling in a p38-dependent manner by decreasing the expression of the Wnt anta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 10 شماره
صفحات -
تاریخ انتشار 2012